Paxillin facilitates timely neurite initiation on soft-substrate environments by interacting with the endocytic machinery
نویسندگان
چکیده
Neurite initiation is the first step in neuronal development and occurs spontaneously in soft tissue environments. Although the mechanisms regulating the morphology of migratory cells on rigid substrates in cell culture are widely known, how soft environments modulate neurite initiation remains elusive. Using hydrogel cultures, pharmacologic inhibition, and genetic approaches, we reveal that paxillin-linked endocytosis and adhesion are components of a bistable switch controlling neurite initiation in a substrate modulus-dependent manner. On soft substrates, most paxillin binds to endocytic factors and facilitates vesicle invagination, elevating neuritogenic Rac1 activity and expression of genes encoding the endocytic machinery. By contrast, on rigid substrates, cells develop extensive adhesions, increase RhoA activity and sequester paxillin from the endocytic machinery, thereby delaying neurite initiation. Our results highlight paxillin as a core molecule in substrate modulus-controlled morphogenesis and define a mechanism whereby neuronal cells respond to environments exhibiting varying mechanical properties.
منابع مشابه
Phosphorylation of paxillin by p38MAPK is involved in the neurite extension of PC-12 cells
Cell adhesions play an important role in neurite extension. Paxillin, a focal adhesion adaptor protein involved in focal adhesion dynamics, has been demonstrated to be required for neurite outgrowth. However, the molecular mechanism by which paxillin regulates neurite outgrowth is unknown. Here, we show that paxillin is phosphorylated by p38MAPK in vitro and in nerve growth factor (NGF)-induced...
متن کاملA Modular Design for the Clathrin- and Actin-Mediated Endocytosis Machinery
Endocytosis depends on an extensive network of interacting proteins that execute a series of distinct subprocesses. Previously, we used live-cell imaging of six budding-yeast proteins to define a pathway for association of receptors, adaptors, and actin during endocytic internalization. Here, we analyzed the effects of 61 deletion mutants on the dynamics of this pathway, revealing functions for...
متن کاملSH2B1 orchestrates signaling events to filopodium formation during neurite outgrowth
Morphogenesis during development is fundamental to the differentiation of several cell types. As neurite outgrowth marks neuritogenesis, formation of filopodia precede the formation of dendrites and axons. While the structure of filopodia is well-known, the initiation of filopodia during neurite outgrowth is not clear. SH2B1 is known to promote neurite outgrowth of PC12 cells, hippocampal and c...
متن کاملThe Initiation of Clathrin-Mediated Endocytosis Is Mechanistically Highly Flexible
Clathrin-mediated endocytosis is driven by a complex machinery of proteins, which assemble in a regular order at the plasma membrane. The assembly of the endocytic machinery is conventionally thought to be a continuous process of mechanistically dependent steps, starting from a defined initiation step. Indeed, several initiation mechanisms involving single proteins have been proposed in mammali...
متن کاملRNAi-mediated Hip1R silencing results in stable association between the endocytic machinery and the actin assembly machinery.
Actin filaments transiently associate with the endocytic machinery during clathrin-coated vesicle formation. Although several proteins that might mediate or regulate this association have been identified, in vivo demonstration of such an activity has not been achieved. Huntingtin interacting protein 1R (Hip1R) is a candidate cytoskeletal-endocytic linker or regulator because it binds to clathri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2017